第33回ダイヤモンドシンポジウムプログラム

2019年11月13日(水)~15日(金) 東京工業大学

第 1 日目(11月13日)

オーラルセッション1

- 10:40~12:00 座長 町田友樹(東大生研)
 - 101 超高圧合成法による窒化ホウ素単結晶の残留不純物制御 (物材機構)○谷口 尚,宮川 仁,渡邊賢司
 - 102 密度汎関数理論に基づく不純物状態の新たな高精度計算手法とダイヤモンド および立方晶窒化ホウ素に対する応用
 - (東工大理) ○山下寛樹, 芳賀太史, 藤本義隆, 斎藤 晋
 - 103 グラフェン/n 型ダイヤモンドヘテロ構造の電界放出電子分光による評価 (産総研¹,静岡大²,国際基督教大³)○山田貴壽¹,増澤智昭²,三村秀典², 岡野 健³
- △104 ラマン分光法を用いた CVD グラフェンの移動度散乱機構の解明 (産総研¹,物材機構²)○沖川侑揮¹,谷口 尚²,渡邊賢司²,長谷川雅考¹, 山田貴壽¹

12:00~13:00 昼 休 み

オーラルセッション2

- 13:00~15:00 座長 山田英明(産総研)、宮本良之(産総研)
- △105 微傾斜ダイヤモンド{111} 基板上での高品質ホモエピタキシャル成長 (物材機構)○市川公善, 寺地徳之, 嶋岡毅紘, 小泉 聡
- △106 {111} ホウ素ドープダイヤモンド薄膜成長の基板オフ角依存性評価 (物材機構)○嶋岡毅紘,市川公善,小泉 聡
 - 107 CVD 装置改良によるダイヤモンドの高濃度リンドーピング (物材機構) ○小泉 聡, 嶋岡毅紘, 市川公善
 - 108 熱フィラメント CVD 法により成長したリンドープ n 型ダイヤモンド膜の電気 的特性
 - (九州工業大¹, 物材機構²) ○片宗優貴¹, 森 大地¹, 和泉 亮¹, 嶋岡毅紘², 市川公善², 小泉 聡²
- △109 室温 11B+イオン注入及び 1150°C, 1300°C アニール処理による IIa 型ダイヤ モンド基板への高効率 p 型 B ドーピング (神奈川大) ○関 裕平, 星野 靖, 中田穣治
 - 110 リンドープ n 型ダイヤモンドへのホウ素イオン注入による p 型伝導層の形成 (産総研¹, 法政大²) ○小倉政彦¹, 西村智朗², 加藤宙光¹, 牧野俊晴¹, 山崎

15:00~15:20 休憩

ポスターセッション

$15:20\sim16:50$

P1-01 複数パルス列における 15N 窒素核スピンからの超微細相互作用によって変調 された NV スピンコヒーレンス

(産総研)○石川豊史,吉澤明男,馬渡康徳,渡邊幸志

- P1-02 オニオンライク DLC コーティングの開発 (東工大工学院¹,東工大科学技術創成院²)○榎本 隼¹,平田祐樹¹,赤坂大樹
 ¹,大竹尚登²
- P1-03 MVP 法を用いたカーボン膜の作製における圧力の影響 (兵庫県立大院) 〇大久保拓志,田中一平,原田泰典
- P1-04 アーク蒸着とマグネトロンスパッタを重畳した気相成長法により作製した a-BCN 膜の評価 (東工大院¹,東工大工学院²,東工大科学創成研究院³)○竹内亮大郎¹,岩本
- 喜直¹,河越雅雄¹,谷口紘章¹,平田祐樹³,赤坂大樹²,大竹尚登³ P1-05 軟質金属材料へのDLCコーティングの応用 (東工大工学院¹,東工大科学技術創成研究院²,小松製作所³)○大澤卓也¹,

松尾 誠1, 江山雄哉1, 山本 浩3, 田中真二2, 菊池雅男2,

平田祐樹²,赤坂大樹¹,大竹尚登²

- P1-06 RF プラズマ CVD およびマグネトロンスパッタリング法を用いて形成された多層 DLC の組成評価
 - (東京電機大) ○鈴木貴大, 大越康晴, 小畑修二, 平栗健二, 本間章彦
- P1-07 PECVD 法により作製した DLC 膜の光学定数の基板パルスバイアス周波数、Duty 比、及び電力依存性
 - (大阪産業技術研究所¹,大阪府立大²)○近藤裕佑¹,筧 芳治¹,佐藤和郎¹, 松村直巳¹,沈 用球²
- P1-08 水素化アモルファス炭素膜の水素量と電気伝導特性の相関 (東工大¹,タイ・シンクロトロン光研究所²) ○冨所優志¹, Tunmee Sarayut², Nakajima Hideki², Rittihong Ukit², Supruangnet Ratchadaporn²,平田祐樹 ¹,大竹尚登¹,赤坂大樹¹
- P1-09 ボールオンディスク試験後の DLC 表面の摺動痕の構造評価 (東工大¹, タイ放射光研究所²) ○法月奏太¹, Tunmee Sarayut², Euaruksakun Chanan², Rittihong Ukit², 鈴木啓介¹, 冨所優志¹, 平田祐樹², 大竹尚登 ¹, 赤坂大樹¹
- P1-10 酸に対する 2 層 DLC コーティングの耐食性向上効果 (東京電機大¹, ナノテック²) ○永井智靖¹, 竹田秀也¹, 中森秀樹², 平塚傑工², 平栗健二¹
- P1-11 各種高分子材料における非晶質炭素膜の電気特性評価 (東京電機大) 〇髙田 歩,大越康晴,鈴木貴大,小畑修二,平栗健二,本間

章彦

- P1-12 プラズマ処理した DLC 膜の高分子材料に対する摩擦特性の評価 (日工大院¹,物材機構²,日工大³)○黒澤徳弘¹,井上友希¹,神田久生²,福 長 脩³,竹内貞雄³
- P1-13 DLC を金属中に包埋した複合材料厚膜の作製 (東工大) 〇沖村奈南,崔 鐘範,中山 亘,阿多誠久,平田祐樹,大竹 尚登, 赤坂大樹,
- P1-14 各種材料の抗菌性向上に向けたダイヤモンド状炭素薄膜 (東京電機大¹,日本アイ・ティ・エフ²)○小野寺修¹,藤井慎也²,森口秀樹², 内海慶春²,平栗健二¹
- P1-15 DLC を活用した医療機器の表面改質 (東京電機大 1 , ナミキ・メディカルインストゥルメンツ 2 , ナノテック 3) 〇金 子眞生 1 , 並木和茂 2 , 中森秀樹 3 , 平塚傑工 3 , 平栗健二 1
- P1-16 骨折治療に有効な Zn-DLC の Zn 溶出特性 (東京電機大¹, 東京慈恵会医科大², ナノテック³, ニチオン⁴) ○齋藤一拓¹, 馬目佳信², 藤岡宏樹², 平塚傑工³, 本田宏志⁴, 大越康晴¹, 平栗健二¹
- P1-17 Characterization of adsorbed protein on post wear test of ta-C and a-C:H contact surfaces

 (マレーシア工科大¹、東工大²) ○Liza Binti Kamis Shahira¹、
 赤坂大樹²、大竹尚登²
- P1-18 異なる分子形状を有するカーボンオニオンの研磨性能の比較 (東工大)○村井祥祐,佐野龍樹,青野祐子,平田 敦
- P1-19 再利用 $Ir(111)/\alpha$ -A1203(0001) 基板を用いた一様な単層グラフェンの CVD 成長
 - (青学大院理工)○櫻井 篤,仁木雅也,渡辺剛志,澤邊厚仁,黄 晋二
- P1-20 熱 CVD 法による CNT 合成における A1 触媒の影響 (東海大院工¹, 東海大工², 東海大/東海大院³) ○小久保良亮¹, 加藤裕一², 葛巻 徹³
- P1-21 コールドスプレー法による CNT 含有鉄複合材料膜の高速合成 (東工大) 〇中山 亘,沖村奈南,崔 鐘範,發知卓也,平田祐樹,大竹尚登, 赤坂大樹
- P1-22 エンジニアリングプラスチック基カーボンナノチューブ複合材料膜のコール ドスプレー法による作製 (東工大)〇發知卓也, Choi Jongbeom, 沖村奈南, 中山 亘, 平田祐樹, 大竹 尚登, 赤坂大樹
- P1-23 透明導電膜形成における C60 と Ni 触媒の膜厚の最適化 (東海大院工¹, 東海大工², 産総研³, 東海大院/東海大⁴) 〇和田有里¹, 宮本か おり², 山田貴壽³, 葛巻 徹⁴
- P1-24 フラーレン由来のグラフェンによる配線材料形成の検討 (東海大院工¹, 東海大工², 産総研³, 東海大院/東海大⁴) ○永田兆嗣¹, 嶋谷拓 真², 山田貴壽³, 沖川侑揮³, 葛巻 徹⁴
- P1-25 C60 由来の炭素導電薄膜を負極とする全固体型リチウムイオン電池の形成

- (東海大院¹, 東海大院/東海大²) ○田村亮太¹, 永田兆嗣¹, 葛巻 徹²
- P1-26 チタン被覆した CNT 紡績糸の機械的性質に及ぼす通電加熱の影響 (東海大院工¹,東海大工²,岡山大院自然科学³,東海大院工/東海大工⁴)○手 塚貴也¹,佐野巧馬²,中條大樹³,森 光生³,葛巻 徹⁴,林 靖彦³
- P1-27 光電子顕微鏡によるグラフェン/h-BN 界面の評価 (東北大¹,産総研²,物材機構³)○小川修一¹,山田貴壽²,門脇 良¹,虻川 匡司¹,谷口 尚³,高桑雄二¹
- P1-28 分子動力学法によるカーボンオニオンナノ粒子の面間圧縮変形の解析 (東工大)○野口悠輝,太田立志,青野祐子,平田 敦
- P1-29 RF スパッタリング法により作製した非晶質窒化ホウ素膜の熱的安定性 (千葉工大院¹, 千葉工大²) ○丸子拓也¹, 坂本幸弘²
- P1-30 h-BN 膜におけるドナーとアクセプターのイオン化エネルギーの高精度推定 (東工大理)○芳賀太史,藤本義隆,斎藤 晋
- P1-31 物理気相成長法による銅基板上への六方晶窒化ホウ素薄膜の合成 (東工大工学院¹,東工大科学技術創成研究院²)○吉里樹人¹,平田祐樹²,赤 坂大樹¹,大竹尚登²
- P1-32 Floating Zone 法により合成した β 型酸化ガリウム結晶表面に対する Ar+イオンミリングと空気雰囲気中熱処理の効果 (産総研¹,物材機構²) ○渡邊幸志¹,立木 実²,田中孝治¹,高野美和子², 尾崎康子¹,伊藤利充¹
- P1-33 高温高圧法により成長した六方晶窒化ホウ素単結晶の発光像観察 (物材機構)○渡邊賢司,谷口 尚
- P1-34 C6H6-N2 混合気体のマイクロ波プラズマ CVD で生成する a-CNx:H 薄膜の結合状態解析 (長岡技科大)○金田敦司,伊藤治彦

第 2 日目(11月14日)

オーラルセッション3

- 10:00~10:40 座長 宮下庸介 (三菱マテリアル)
 - 201 CMP によるダイヤモンド加工変質層の除去 (アダマンド並木精密宝石) 〇小山浩司,藤田直樹,川又友喜,金 聖祐
 - 202 ナノダイヤモンド膜の硬質被膜への応用 (九大¹, カフルアッシャイフ大², オーエスジー³, アル=アズハル大⁴) ○吉武 剛¹, エギザ モハメド², 村澤功基³, アリ モハメド アリ⁴, 杉田博昭¹, 福井康雄³, 権田英修³, 櫻井正俊³

オーラル特別セッション「DLC」

10:40~12:00 座長 大花継頼(産総研)、平田 敦(東工大)

 \triangle 203 アルミ合金切削時における DLC 膜上への凝着発生メカニズムの解明 (三菱マテリアル 1 ,東工大 2) 〇龍田 誠 1 ,藤原和崇 1 ,大竹尚登 2

204 フィルタードアーク蒸着法で作製した水素フリーおよび水素化 DLC 膜の特性 と分類

(豊橋技科大¹,神奈川県立産業技術総合研究所²,岡山県工業技術センター³,兵庫県立大⁴,伊藤光学工業⁵,オンワード技研⁶)○針谷 達¹,今井貴大¹,戸谷陽文¹,滝川浩史¹,金子 智²,國次真輔³,新部正人⁴,神田一浩⁴,神谷雅男⁵,瀧 真⁶

205 SRV 試験機を用いた DLC 膜のはく離特性評価 (産総研) ○間野大樹、大花継頼

206 マイクロスクラッチ試験機による DLC 基準試料の密着性評価 $(\nu \lambda^1, \tau \nu^2) \cap \pi \tau^1$, 平塚傑工 2 , 竹内光明 1

12:00~13:00 昼休み

オーラルセッション4

13:00~14:40 座長 渡辺剛志(青学大)、近藤剛史(東理大)

△207 ホウ素ドープダイヤモンドを用いた CO2 の電解還元における生成物選択性の 制御

(慶大院理工¹, 慶大理工²) ○冨﨑真衣¹, 笠原誠司¹, 夏井敬介¹, 池宮範人¹, 栄長泰明²

- 208 ホウ素ドープダイヤモンド電極を用いた電気化学発光 (慶大 1 , 慶大/JST-ACCEL 2) \bigcirc イルハム イルハム 1 , フィオラニ アンドレア 1 , 坂ノ上航平 1 , 栄長泰明 2
- △209 各種 DLC の光学定数と sp3/sp2 構造の違いに依存した細胞接着特性の評価 (東京電機大¹,順天堂大²,ナノテック³,シンクロトロン光研究所⁴)○鬼頭 大海¹,大越康晴¹,福原武志²,平塚傑工³, Tunmee Sarayut⁴, Rittihong Ukit⁴, Euaruksakul Chanan⁴, Nakajima Hideki⁴,中森秀樹³,矢口俊之¹, 本間章彦¹,平栗 健二¹
- △210 スクリーン印刷ダイヤモンド電極の高感度化と薬剤濃度測定 (東理大理工)○松永智広,近藤剛史,東條敏史,湯浅 真
 - 211 導電性ダイヤモンドナノ粒子を用いた高エネルギー・高出力密度水系 EDLC デバイスの作製

(東理大理工 1 , ダイセル 2) 〇須貝聖也 1 , 宮下健丈 1 , 近藤剛史 1 , 西川正浩 2 , 鄭 貴寬 2 , 東條敏史 1 , 湯浅 真 1

14:40~15:00 休憩

ポスターセッション

$15:00\sim16:30$

- P2-01 ダイヤモンドマイクロ電極を用いた神経作用薬の生体内リアルタイム測定 (慶大理工¹,新潟大医²,慶大理工/JST-ACCEL³) ○花輪 藍¹,緒方元気²,浅 井 開¹,日比野浩²,栄長泰明³
- P2-02 光表面化学修飾法を利用した窒素官能基化カーボンおよびポリマー材料の作

製

- (産総研)○中村挙子,大花継頼,十屋哲男
- P2-03 多層グラフェン電極の電気化学発光イメージング解析 (青学大院理工) 〇岩﨑貴充,渡辺剛志,原 菜摘,黄 晋二
- P2-04 KrF エキシマレーザーを用いた超硬合金上の多結晶ダイヤモンド膜の表面研磨 (九州工業大 1 , オーエスジーコーティングサービス 2 , 九大 3) 〇片宗優貴 1 , 村澤功基 2 , 吉武 剛 3 , 菊地俊文 3 , 池上 浩 3
- P2-05 熱フィラメント CVD 装置を用いた超硬合金の脱炭処理 (日工大院¹,物材機構²,日工大³)○木村駿吾¹,稲田大雅¹,神田久生²,福 長 脩²,竹内貞雄³
- P2-06 ダイヤモンドコーティングにおける超硬合金基板の Co 除去効果 (日工大院¹,物材機構²,日工大³)○海老優季¹,飯塚拓也¹,神田久生²,福 長 脩³,竹内貞雄³
- P2-07 金属被覆ダイヤモンドからの金属基複合材料膜の作製 (東工大¹,旭ダイヤモンド工業²) 〇崔 鐘範¹,中山 亘¹,沖村奈南¹,上塚 洋²,大谷亮太²,發知卓也¹,平田祐樹¹,大竹尚登¹,赤坂大樹¹,
- P2-08 ボロンドープした多結晶ダイヤモンド膜の化学摩耗の評価 (日工大院¹,物材機構²,日工大³) ○宋 翰聞¹,神田久生²,福長 脩³,竹 内貞雄³
- P2-09 窒素濃度の異なる単結晶ダイヤモンドの摩耗特性評価 (日工大院¹,住友電工²,物材機構³,日工大⁴)〇堀川翔平¹,大澤聖也¹,角 谷 均²,神田久生³,福長 脩⁴,竹内貞雄⁴
- P2-10 単結晶ダイヤモンドのヘルツ破壊強度におよぼす圧子表面粗さの影響 (日工大院¹,住友電工²,物材機構³,日工大⁴)○阿部航大¹,角谷 均²,神 田久生³,福長 脩⁴,竹内貞雄⁴
- P2-11 3C-SiC/Si(111) 基板上へのダイヤモンド核形成プロセスの In-situ 観測 (東工大) ○梶山健一、奥田真一郎、岩崎孝之、波多野睦子
- P2-12 金属援用終端法によるヘテロエピタキシャルダイヤモンド基板の結晶性改善 (産総研¹,大阪府立大院工²)〇小林篤史¹,大曲新矢¹,坪内信輝¹,齊藤丈靖², 竹内大輔¹
- P2-13 マイクロ波プラズマ CVD による Si 基板上ダイヤモンド薄膜の合成 (電通大院情報理工) 〇上岡弘弥,森 敏弘,坂井玲央,一色秀夫
- P2-14 Si 基板上ダイヤモンドデバイスへの応用に向けたボロンチップを用いた p 型 ダイヤモンド薄膜成長
 - (電通大院情報理工)○坂井玲央,一色秀夫,上岡弘弥,森 敏洋
- P2-15 マイクロ波液中プラズマ法を利用したダイヤモンドへのリンドーピング (東理大院理工¹,東理大総合研究院²,旭ダイヤモンド工業³)○内田晃弘¹, 富永悠介¹,寺島千晶²,軽部瑶美³,上塚 洋³,鈴木孝宗²,近藤剛史¹, 星 芳直¹,四反田功¹,板垣昌幸¹,藤嶋 昭²
- P2-16 Ar/TiPS マイクロ波プラズマを用いたナノ結晶ダイヤモンドの化学気相合成に 向けた作製と評価

- (電通大院情報理工) ○森 敏洋, 一色秀夫, 坂井玲央, 上岡弘弥
- P2-17 直接照射型慣性核融合用ダイヤモンドカプセルの高品質化 (大阪大レーザー科学研¹,産総研²)○岩崎稔広¹,山田英明²,大曲新矢²,茶 谷原昭義²,竹内大輔², 杢野由明²,弘中陽一郎¹,重森啓介¹
- P2-18 X線トポグラフィによる転位ベクトル解析手法 (関学大)○鹿田真一,明石直也
- P2-19 ダイヤモンド基板上の貫通転位がデバイス特性に及ぼす影響評価 (関学大¹、物材機構²) ○見方尚輝¹、寺地徳之²、鹿田真一¹
- P2-20 禁制反射を用いたダイヤモンド単結晶の結晶性評価 (関学大) ○河田 快, 鹿田真一
- P2-21 ダイヤモンドエピタキシャル膜起因の CL 発光欠陥の同定 (関学大 1 , 物材機構 2) \bigcirc 宮嶋孝輔 1 , 寺地徳之 2 , 鹿田真 $-^1$
- P2-22 ダイヤモンド(111) 基板上の MBE 成長 AlGaN 薄膜の質とバンドオフセット (早大ナノ・ライフ¹,早大理工²) 〇河野省三¹,堀川清貴²,立石哲也²,矢 部太一²,川原田洋²
- P2-23 ラマン分光法による n 型リンドープダイヤモンドに水素が与える影響評価 (関学大 1 , 産総研 2 , 物材機構 3) 〇松岡実李 1 , 土田有記 1 , 大谷 1 , 山田 貴壽 2 , 小泉 3 , 鹿田真一 1
- P2-24 Sn イオン注入した高温高圧処理ダイヤモンドのフォトルミネッセンス (愛媛大工¹, 愛媛大 GRC²) 〇福田 \mathfrak{P}^1 , 村上洋平¹, 石川史太郎¹, 松下正史¹, 新名 \mathfrak{P}^2 , 大藤弘明², 入舩徹男²
- P2-25 ダイヤモンド微粒子の誘電泳動による電気的特性調査 (九大院システム情報科学府¹, 九大院システム情報科学研究院²) ○林 将平¹, 李 赫男¹, 稲葉優文², 中野道彦², 末廣純也²
- P2-26 高分解能 EBSD 測定と FIB/STEM 観察による β-Ga203 とモザイク・ダイヤモンドの評価 (産総研¹,物材機構²) ○田中孝治¹,大曲新矢¹,梅沢 仁¹,渡邊幸志¹,立木 実²,高野美和子²,伊藤利充¹
- P2-27 低温におけるダイヤモンドショットキーpn ダイオードの電気特性 (筑波大¹,産総研²)○唐澤歩睦¹,牧野俊晴²,加藤宙光²,小倉政彦²,加藤 有香子²,竹内大輔²,山崎 聡²,櫻井岳暁¹
- P2-28 ホウ素ドープダイヤモンド金属 半導体電界効果トランジスタの開発 (物材機構)○劉 江偉,寺地徳之,達 博,小出康夫
- P2-29 ダイヤモンド電解質溶液ゲート FET を用いた海中無線通信の通信距離の評価 (早大理工)○寳田晃翠, 蓼沼佳斗, 井山裕太郎, 張 育豪, 新谷幸弘, 川原田 注
- P2-30 超伝導ボロンドープダイヤモンド(111)成長層を用いた液体へリウム温度以上で動作可能な超伝導量子干渉計の作製 (早大理工¹,物材機構²)○高橋泰裕¹,天野勝太郎¹,森下 葵¹,蔭浦泰資²,高野義彦²,立木 実²,大井修一²,有沢俊一²,川原田洋¹
- P2-31 ALD-A1203 ダイヤモンド MOSFET における高周波出力密度の向上に向けたオー バーラップ構造の採用

(早大理工)○荒井雅一,久樂 顕,今西祥一朗,堀川清貴,平岩 篤,川原田 洋

特別講演

16:40~17:40 座長 平田 敦(東工大)

「固体にレーザー光をあて続けて30年余り」

三重大学大学院工学研究科 教授 小海 文夫 氏

懇 親 会

東京工業大学 蔵前会館 ロイアルブルーホール 18:00~19:30

第 3 日目(11月15日)

オーラル特別セッション「NV センター」

10:00~12:20 座長 波多野睦子(東工大)、岩﨑孝之(東工大)、寺地 徳之(物材機構)

- △301 窒素終端(111)ダイヤモンドから作製した 2 次元高配向 NV アンサンブル (早大¹, 高崎量子応用研², メルボルン大³, 物材機構⁴, 筑波大⁵, 各務記念材 料技術研⁶) ○金久京太郎¹, 立石哲也¹, 薗田隆弘¹, Buendia J Jorge¹, 蔭 浦泰資¹, 川勝一斗¹, 畑 雄貴¹, 永岡希朗¹, 石井 邑¹, 谷井孝至¹, 小野 田忍², Stacey Alastair³, 寺地徳之⁴, 磯谷順一⁵, 河野省三⁶, 川原田洋¹
 - 302 ダイヤモンド CVD 成長における窒素ドーピング制御 (物材機構)○寺地徳之,渡邊賢司,小泉 聡
 - 303 異方的高温高圧処理による NV センター形成 (量研¹, 群馬大², 愛媛大³) ○小野田忍¹, 樋口泰成², 齋藤寛之¹, 西原 遊³, 加田 渉², 花泉 修², 大島 武¹,
- △304 量子中継システム実験に向けたダイヤモンド量子 NV 素子の光学的構造最適化 (横浜国立大¹,セイコーインスツル²,産総研³)○倉見谷航洋¹,関口雄平¹, 鈴木智也²,新荻正隆²,加藤宙光³,牧野俊晴³,小坂英男¹
 - 305 ダイヤモンド NV センターの電気的読み出しに向けた pin 構造による光電流の 検出

(東工大1, 産総研2) ○室岡拓也1, 楊 棒1, 椎貝雅文1,

牧野俊晴²,加藤宙光²,小倉政彦²,山崎 聡²,波多野睦子¹,岩崎孝之¹

△306 n型ダイヤモンド中のNV中心による長いコヒーレンス時間と超高感度化の実現

(京大化学研 1 , 産総研 2) ○ヘルブシュレブ デイビッド エルンスト 1 , 加藤宙光 2 , 丸山祐一 1 , 檀上拓哉 1 , 牧野俊晴 2 , 山崎 聡 2 , 大木 出 1 , 林 寛 1 , 森下弘樹 1 , 藤原正規 1 , 水落憲和 1

△307 核スピンイメージングを用いた生体分子解析 (IST さきがけ¹、東工大²) ○石綿 整¹、波多野睦子² 12:20~13:20 昼 休 み

オーラルセッション5

13:20~14:40 座長 廖 梅勇(物材機構)

- △308 (111)面を用いた六角形トレンチ構造を持つ縦型 2DHG ダイヤモンド MOSFET の大電流動作の実現 (早大理工)○新倉直弥,西村 隼,岩瀧雅幸,大井信敬,森下 葵,川原田 洋,平岩 篤
- △309 厚膜 A1203 絶縁膜を有する 2DHG ダイヤモンド MOSFETs の大信号特性解析@1 GHz (早大理工) ○鈴木優紀子, 久樂 顕, 今西祥一朗, 堀川清貴, 平岩 篤, 川原田洋
- \triangle 310 金属援用終端法によるダイヤモンド高濃度ホウ素ドープ基板のキラー欠陥低減 (産総研 1 , 大阪府立大院工 2) 〇小林篤史 1 , 大曲新矢 1 , 梅沢 仁 1 , 齊藤丈靖 2 , 竹内大輔 1
- \triangle 311 ミニマルファブを活用したダイヤモンド SBD の作製と歩留まり率の評価 (北大 1 , 産総研 2) 〇花田尊徳 1 , 梅沢 仁 2 , 大曲新矢 2 , 竹内大輔 2 , 金子純

14:40~15:00 休憩

オーラルセッション6

15:00~16:00 座長 寺地徳之(物材機構)

- 312 単結晶ダイヤモンド MEMS センサチップ (物材機構) ○廖 梅勇, Sang Liwen, 小泉 聡, 井村将隆, 小出康夫
- △313 ダイヤモンド電解質溶液ゲートを用いた Vessel Gate 本体の pH Sensitivity (早大)○川口柊斗,井山裕太郎,張 育豪,蓼沼佳斗,新谷幸弘,川原田洋
 - 314 自動車電池モニタに向けたダイヤモンド量子センサの開発 (矢崎総業¹,東工大²,量研³) ○申 在原¹,波多野雄治²,増山雄太³,杉山 洋貴¹,石居 真¹,岩崎孝之², 波多野睦子²

■ 優秀講演賞について

優秀講演賞の選考対象となる発表には 講演番号の前に△印が付記されています。