第34回ダイヤモンドシンポジウムプログラム

2021年1月12日(火)~14日(木) オンライン開催

第 1 日目(1月12日)

オーラルセッション1

- 9:20~10:20 座長 寺地徳之(物材機構)
- \triangle 101 熱フィラメント CVD 法によるリンドープ n 型ダイヤモンド薄膜の成長と評価 (九工大 1 , 産総研 2 , 物材機構 3) 〇片宗優貴 1 , 森大地 1 , 和泉亮 1 , 嶋岡毅紘 2 , 市川公善 3 , 小泉聡 3
- △102 Si 基板上ダイヤモンドデバイスに向けた孤立単結晶ダイヤモンドのヘテロ成長

(電通大)○萩原大智,上岡弘弥,一色秀夫

△103 高配向核形成とαパラメータ変調を用いた Si 基板上コアレッセントエピタキシャルダイヤモンド薄膜の合成と評価 (電通大)○上岡弘弥, 萩原大智, 一色秀夫

10:20~10:40 休憩

オーラルセッション2

10:40~12:00 座長 片宗優貴(九工大)

- △104 マイクロ波液中プラズマ法を利用したダイヤモンドへの異元素ドーピング (東理大院理工¹, 東理大総合研究院光触媒国際研究センター², 旭ダイヤモン ド工業³) ○内田晃弘¹, 富永悠介¹, 辻内愛³, 上塚洋³, 鈴木孝宗², 近藤剛 史¹, 渡辺日香里¹, 四反田功¹, 板垣昌幸¹, 藤嶋昭², 寺島千晶²
- △105 マイクロ波液中プラズマ CVD を用いた大面積ダイヤモンド薄膜の製造技術の 開発

(東理大院理工¹, 東理大光触媒国際研究センター², 旭ダイヤモンド工業³) ○ 富永悠介¹, 内田晃弘¹, 寺島千晶², 辻内愛³, 上塚洋³, 鈴木孝宗², 近藤剛 史¹, 湯浅真¹, 藤嶋昭²

- △106 爆轟法を用いた SiV 中心含有ナノダイヤモンドの合成 (ダイセル¹,長町サイエンスラボ²,熊本大³,大阪大⁴,京大⁵)○牧野有都¹, 間彦智明¹,劉明¹,吉川太朗¹,長町信治²,田中茂³,外本和幸³,芦田昌明 ⁴,藤原正則⁵,水落憲和⁵,西川正浩¹
- △107 Bイオン注入による CVD ダイヤモンド薄膜中への低補償率 p 型伝導層の形成 (神奈川大) ○関裕平,川崎壮,星野靖,中田穣治
- 12:00~13:00 昼 休 み

オーラルセッション3

13:00~14:00 座長 宮本良之(産総研)

- △108 高感度磁気センシングに向けた 2 次元高密度 NV アンサンブルの作製 (早大¹,量研²,メルボルン大³,筑波大⁴,材研⁵)○早坂京祐¹,金久京太郎 ¹,立石哲也¹,齋藤悠太¹,中村洸介¹,川勝一斗¹,畑雄貴¹,谷井孝至¹, 小野田忍²,Alastair Stacey³,磯谷順一⁴,河野省三⁵,川原田洋¹
- \triangle 109 置換窒素 (P1) と電子線照射による NV センター荷電状態比 (NV-/NV0) 制御 (物材機構 1 , 量研 2) ○真栄力 1 , 宮川仁 1 , 谷口尚 1 , 小野田忍 2 , 石井秀弥 2 , 寺地徳之 1

14:00~14:20 休憩

オーラルセッション4

14:20~15:20 座長 牧野俊晴(産総研)

- △111 生体内リアルタイム蛍光ナノダイヤモンド温度計測 (大阪市立大¹, ベルリンフンボルト大², 蘇州大³, 京大⁴, 慶大⁵, チャップマン大⁶) ○藤原正澄¹, Sun Simo¹, Dohms Alexander², 西村勇姿¹, 首藤健¹, 竹澤有華¹, 押味佳裕¹, Zhao Li³, Sadzak Nikola², 梅原有美¹, 手木芳男¹, 小松直樹⁴, Benson Oliver², 鹿野豊^{5,6}, 中台枝里子¹
- △112 ナノスケール量子計測を用いたラベルフリー脂質二重層相転移計測 (JST さきがけ¹, 慶大量子コンピューティングセンター², 大阪大³, 東工大 ⁴) ○石綿整¹, 渡辺宙志², 花島慎弥³, 岩崎孝之⁴, 波多野睦子⁴
 - 113 ダイヤモンド薄膜中に埋め込まれた Fe ナノ粒子の超常磁性ブロッキング (NTT 物性科学基礎研究所) ○河野慎, 平間一行, 熊倉一英

第 2 日目(1月13日)

オーラルセッション5

- 10:00~11:00 座長 梅沢仁(産総研)
 - 201 水素終端ダイヤモンド電界効果トランジスタの移動度の解析 (物材機構 MANA¹, 筑波大数理², 物材機構³) ○笹間陽介¹, 蔭浦泰資¹, 小松 克伊¹, 森山悟士¹, 井上純一¹, 井村将隆³, 渡邊賢司³, 谷口尚³, 内橋隆¹, 山口尚秀^{1,2}
- △202 トレンチゲート構造を持つ縦型 2DHG ダイヤモンド MOSFET の大電流密度(20.2 kA/cm2)及び低オン抵抗化(2.5 mΩ·cm2)の達成 (早大理工¹,早大材研²) ○太田康介¹,角田隼¹,岩瀧雅幸¹,堀川清貴¹,天

野勝太郎1,新倉直弥1,平岩篤1,川原田洋1,2

△203 耐放射線性を強化した水素終端ダイヤモンド MOSFET (RADDFET) の 1MGy 照射 後特性

(北大¹), 産総研²) 〇山口卓宏¹,梅沢仁²,大曲新矢²,小泉均¹,金子純一¹

11:00~11:20 休憩

オーラルセッション6

11:20~12:00 座長 梅沢仁(産総研)

 \triangle 204 ゲート幅を 1 mm まで拡張した際の多結晶ダイヤモンド MOSFET に及ぼす直流 特性、高周波特性への影響

(早大理工)○浅井風雅, 荒井雅一, 今西祥一朗, 久樂顕, 鈴木優紀子, 平岩 篤, 川原田洋

△205 ダイヤモンド電解質溶液ゲート FET (SGFET) を用いた海中無線通信の出力特性 に対する溶液断面積依存性

(早大理工) 〇佐藤弘隆, 寳田晃翠, 川口柊斗, 蓼沼佳斗, 張育豪, 川原田洋

12:00~13:00 昼 休 み

オーラルセッション7

- 13:00~14:00 座長 近藤剛史 (東理大)
 - 206 ホウ素ドープ SiC 薄膜の作製と電気化学特性の評価 (慶大理工)○内山和樹,山本崇史,栄長泰明
- △207 中性子反射率測定による細胞親和性窒素含有 DLC の構造評価 (東京電機大院¹, CROSS 中性子科学センター², 順天堂大³) ○ファウズィア カマリナ¹, 宮田登², 福原武志³, 平栗健二¹, 大越康晴¹
 - 208 Cu 含有 DLC の作製と抗菌性評価および滅菌処理による膜耐久性評価 (東京電機大¹, ナノテック², 慈恵医大³) ○加賀洋行¹, 平塚傑工², 馬目佳信 ³, 大越康晴¹, 平栗健二¹

14:00~14:20 休憩

オーラルセッション8

14:20~15:00 座長 近藤剛史(東理大)

△209 ダイヤモンドナノ粒子による細胞の熱伝導計測 (大阪大蛋白質研究所)○外間進悟,仲崇霞,鈴木団,原田慶恵

210 ダイヤモンド電極による硫化水素ガス計測 (慶大院理工)○トゥリアナ ユニタ,栄長泰明

第 3 日目(1月14日)

オーラルセッション9

- 9:00~10:20 座長 矢野雅大 (三菱マテリアル)
 - 301 軟質金属材料への DLC コーティングを用いた高機能摺動表面の提案 (東工大工学院機械系¹,小松製作所²,東工大科学技術創成研究院³)○山城崇徳¹,松尾誠¹,田村幸雄²,山本浩²,平田祐樹³,赤坂大樹¹,田中真二³, 菊池雅男³,大竹尚登³
 - 302 FCVA 法による三次元構造物への ta-C 極薄膜コーティング (東工大工学院機械系¹,東工大科学技術創成研究院²,東工大工学院³)○川合 功太郎¹,平田祐樹²,赤坂大樹³,大竹尚登²
 - 303 ポストアニールが窒素添加水素化 DLC 膜の機械的・光学的・電気的特性に及ぼす影響
 - (弘前大院理工)○長内公哉,室野優太,佐藤聖能,小林康之,遠田義晴,鈴 木裕史,中澤日出樹
- \triangle 304 CVD 法で合成したホモエピタキシャルダイヤモンドの機械的特性評価 (日工大院¹,住友電工²,物材機構³,日工大⁴) 〇堀川翔平¹,阿部航大¹,角谷均²,神田久生³,福長脩⁴,竹内貞雄⁴

10:20~10:40 休憩

オーラルセッション10

10:40~12:00 座長 山田貴壽(産総研)

- \triangle 305 ダイヤモンド pn 接合による超高変換効率ベータボルタ電池 (物材機構 1 ,産総研 2 ,グルノーブル大 3)〇嶋岡毅紘 1 ,梅沢仁 2 ,市川公善 1 , Pernot Julien 3 ,小泉聡 1
- △306 単結晶ダイヤモンドを用いた 1 ポート SAW 共振子 (沖縄高専¹, 堀場エステック², 横河ソリューションサービス³, TCK⁴) ○前田 拓哉¹, 小渡祐樹¹, 藤井知¹, 堀田将也², 西里洋², 遠江栄希³, 柴育成³, 大江隆⁴, 小坂光二⁴
 - 307 ダイヤモンド微粒子を電界整列させた伝熱シートの熱伝導率評価 (九大)○稲葉優文,李赫男,神村尊,中野道彦,末廣純也
 - 308 ダイヤモンデバイスのためのプロセス技術開発 (産総研) ○渡邊幸志,根本一正,谷島孝,野田周一,居村史人,Mickael Lozach,梅澤仁,クンプアン ソマワン,原史朗

12:00~13:00 昼休み

オーラルセッション11

13:00~14:20 座長 町田友樹(東大)

△309 CVD グラフェン/HPHT h-BN 構造における電気特性の温度依存性評価 (産総研¹,物材機構²)○沖川侑揮¹,山田貴壽¹,渡邊賢司²,谷口尚²

- 310 水酸化カリウム水溶液を用いて作製したカリウム添加多層グラフェンの評価 (産総研¹,静岡大²,東北大³)○山田貴壽¹,畠山一翔¹,沖川侑揮¹,増澤智昭 ²,小川修一³,高桑雄二³
- 311 高空間分解 SEM-EDS によるナノ炭素材料の表面状態に関する元素組成分析 (産総研)○中島秀朗,森本崇宏,周英,小橋和文,山田健郎, 岡崎俊也
- 312 ダイナミックアニーリングプロセスによる h-BN ナノシート合成手法の開発 (東工大工学院機械系¹,東工大科学技術創成研究院未来産業技術研究所²)○ 吉里樹人¹,平田祐樹²,赤坂大樹¹,大竹尚登²

■ 優秀講演賞について

優秀講演賞の選考対象となる発表には 講演番号の前に△印が付記されています。