ダイヤモンドの歴史

歴史的にダイヤモンドの合成は数多く試みられてきたが、実用レベルでの合成の成功は1955年Natureに発表されたGEグループの高温高圧法であろう。その後高温高圧法によって合成されたダイヤモンドは工具として使われるダイヤモンドの95%以上を占めるようになった。また高温高圧法では不純物としてホウ素をドープすることによって、p形半導体が合成され、さらには天然には存在しない新物質である立方晶窒化ホウ素が合成された。これらの結果はダイヤモンド系物質の材料としての機能化を期待させるものであったが、合成に高度な技術が要求されること、したがってコストが高いことが技術の広がりを阻むものとなっていた。

一方、化学気相成長法(CVD: Chemical Vapor Deposition)による合成の試みは、高圧環境を利用した合成法が19世紀後半に始まったのに比べ、比較的新しいもので1940年代といわれている。米国で高温高圧法と気相法の両方で合成するプロジェクトが始まり、結果的に高温高圧法が残り、GEの成功につながったようである。気相法が注目を集めたのは1980年にモスクワで開かれた結晶成長国際会議で発表されたロシアのグループの結果で、翌1981年に論文としてJ. Cryst. Growthに掲載された。その中の原子状水素の記述に注目してダイヤモンドの気相合成に成功したのが無機材質研究所のグループである。またヨーロッパや米国でも合成に取り組んでいたようでその成果はダイヤモンド状炭素膜、硬質炭素膜、アイカーボンなどと呼ばれていた。

ニューダイヤモンドという言葉が使われるようになったのは、ダイヤモンドの応用分野が主に工具であったことに対し、ニューという接頭語は、新たに機能材料として期待されてつけられたものであり、またダイヤモンドだけでなく窒化ホウ素やダイヤモンド状炭素膜、あるいはそれらに類似する性質を有するものも同様に含む意味合いがある。そのきっかけはダイヤモンドの気相合成法の開発で、それによってコーティング、大面積化、不純物の制御などが可能となり、低コスト化とともに高機能化を大いに期待させるものであった。その後20年を経て、材料「ニューダイヤモンド」は、その一部にコストや寿命など競争材料に太刀打ちできず淘汰されたものも存在するが、いまだに可能性が期待されて発展途上にあるもの、ほかの材料を凌駕して商品化され市場に出回っているもの、新規登場のものなどさまざまである。

年	業績	研究者名	所 属	Reference および本会誌掲載号
1955	ダイヤモンド高圧合成成功	F. P. Bundy	GE	Nature, 176, p. 51-55 (1955), NEW DIAMOND 7, 38 (1987)
1956	CCI4, CBr4 を原料とする熱CVD (特許)	B. Spitsyn	物理化学研究所 (ソ)	USSR Inv. Certif., No. 339134 (1956)
1957	立方晶窒化ホウ素の高圧合成成功	R. H. Wentorf, Jr.	GE	J. Chem. Phys., 26, p. 956 (1957), NEW DIAMOND 7, 38 (1987)
	高圧合成ダイヤモンド商品化		GE	NEW DIAMOND 7, 38 (1987)
1958	炭化水素の熱分解によるダイヤモンドの合成(特許)	Eversole	カーボランダム社 (米)	US Patent 3030187 and 3030188
1959	ダイヤモンド内の窒素の分析	W. Kaiser	Bell Tel.	Phys. Rev., 115, p. 857-863 (1959)
	ダイヤモンド内の窒素(ESR)	W. V. Smith	International Business Machine Corporation	Phys. Rev., 115, p. 1546-1552 (1959)
1960	ベルト型高圧発生装置の開発	H. T. Hall		Rev. Sci. Instrum., 31, p. 125-131 (1960)
1961	衝撃圧縮によるダイヤモンド合成 成功	P. S. DeCarli	Stanford Research Institute	Science, 133, p. 1821 (1961) , NEW DIAMOND 2, 16 (1986)
1962	ホウ素ドープダイヤモンドの高圧 合成成功	R. H. Wentorf, Jr.	GE	J. Chem. Phys., 36, p. 1987-1990 (1962) , NEW DIAMOND 7, 38 (1987)
	半導体cBN の合成成功	R. H. Wentorf, Jr.	GE	J. Chem. Phys., 36, 1950 (1962) , NEW DIAMOND 10, 21 (1988)
1963	爆発法ナノダイヤモンドの合成成 功			Nature, 333, p. 440-442 (1988) , NEW DIAMOND 74, 7 (2004)
1967	炭化水素の熱分解によるダイヤモンド合成と水素による黒鉛成分の除去	J. Angus	Case Western Researve Univ. (米)	J. Appl. Phys., 39, p. 2915 (1968) 13, 40 (1989)
1971	カラットサイズダイヤモンド単結 晶の合成成功	R. H. Wentorf, Jr.	GE	J. Phys. Chem., 75, p. 1833-1837 (1971), NEW DIAMOND 7, 38 (1987)

			King's Collogo	
	ダイヤモンド内のホウ素の同定	A. T. Collins	King's College, London	J. Phys. C, 4, p. 1789 (1971)
	Diamond-like carbon の発表(イ オンビーム法)	S. Aisenberg		J. Appl. Phys., 42, p. 2953 (1971)
1972	ダイヤモンド焼結体工具の商品化		GE	NEW DIAMOND 7, 38 (1987)
	イオンビームによるダイヤモンド 加工	E. G. Spencer		J. Appl. Phys., 43, p. 2956 (1972), NEW DIAMOND 12, 18 (1989)
1974	焼結ダイヤモンド・cBN 工具の 開発	L. E. Hibbs Jr.	GE	High Temperature-High Pressures, 6, p. 409 (1974)
1976	直流グロー放電法によるダイヤモ ンド状炭素膜の作製	D.S. Whitmell	AERE Harwell(英)	Thin Solid Films, 35, p. 255 (1976)
	高周波グロー放電法によるダイヤ モンド状炭素膜の作製	L. Holland	Univ. Sussex(英)	Thin Solid Films, 38, p. L17 (1976)
	ダイヤモンド中のp 形ドーパント の同定	E. C. Lightowlers	King's College, London	Diamond Research Suppl.14 (1976)
1977	ダイヤモンド内の窒素の凝集の観 察	R.M.Chrenko	GE	Nature, 270, p. 141-144 (1977)
1979	オーストラリアダイヤモンド鉱山 パイプ発見			ダイヤモンド展図録(2000)
	ダイヤモンドの負の電子親和力の 発見	E. J. Himpsel	IBM(米)	Phys. Rev. B, 20, p. 624 (1979)
1980	ダイヤモンドの異質基板上での薄 膜,単結晶の合成	B. Spitsyn	物理化学研究所 (ソ)	J. Cryst. Growth, 52, p. 219 (1981), NEW DIAMOND 14, 44 (1989)
	ダイヤモンドのバイポーラ動作確 認	J. F. Prins	Univ. Witwatersrand	Appl. Phys. Lett., 41, p. 950 (1982)
1981	熱フィラメント法によるダイヤモ ンド合成	松本精一郎	無機材質研究所	Jpn. J. Appl. Phys., 21, p. L183 (1982), NEW DIAMOND 14, 44 (1989)
1982	マイクロ波プラズマ法によるダイ ヤモンド合成	加茂睦和	無機材質研究所	J. Cryst. Growth, 62, p. 642 (1983) , NEW DIAMOND 14, 44 (1989)
	イオンプレーティング法によるダ イヤモンド状炭素膜の作製	C. Weissmantel		Thin Solid Films, 96, p. 31 (1982)
	マグネトロンスパッタ法によるダ イヤモンド状炭素膜の作製	S. Craig	Univ. Sydney(豪)	Thin Solid Films, 97, p. 345 (1982)
	焼結ダイヤモンドアンビルを使っ た高圧発生	遠藤将一	大阪大学	J. Jpn. Association of Mineralogists, Petrologists & Economic Geologists (Special Issue 3), p. 341 (1982), NEW DIAMOND 6, 16 (1987)
1983	ダイヤモンドの電気化学電極への 応用	岩木正哉	理化学研究所	Necl. Instrum. Methods phys. res., 209, p. 1129819839
1984	3万トンプレスの製作		無機材質研究所	NEW DIAMOND 1, 8 (1985)
1985	RF プラズマ法によるダイヤモン ド合成	松本精一郎	無機材質研究所	J. Mater. Sci. Lett., 4, p. 600 (1985) , NEW DIAMOND 14, 44 (1989)
	熱フィラメントCVD 法における 正バイアス効果	澤邊厚仁	青山学院大学	Appl. Phys. Lett., 46, p. 146 (1985), NEW DIAMOND 14, 44 (1989)
	カラットサイズダイヤモンド単結 晶商品化		住友電気工業	NEW DIAMOND 16, 16 (1990)
	超高圧単結晶のヒートシンク発売		住友電気工業	住友電気,129, p. 99(1986)
	ダイヤモンドのドライエッチング	N. N. Efremow	MIT	J. Vac. Sci. Technol. B, 3, p. 416 (1985) , NEW DIAMOND 62, 15 (2001)
	ダイヤモンドのドライエッチング		MIT	· ·

1986	高圧合成ダイヤモンドアンビルを 使った高圧発生	小野寺昭史	大阪大学	Science, 232, p. 1419 (1986), NEW DIAMOND 9, 10 (1988)
	ダイヤモンド被覆タングステン チップ工具の開発	奥住文徳	旭ダイヤモンド工業	NEW DIAMOND 5, 32 (1987)
	ダイヤモンド被覆焼結ダイヤモン ド工具の開発	吉川昌範	東京工業大学	精密工学会誌, 55, p. 1645(1989), NEW DIAMOND 6, 32(1987)
	ダイヤモンド被覆超硬合金工具の 商品化	菊池則文	三菱金属	Mater. Sci. Eng., A105/106, p. 525 (1988), NEW DIAMOND 7, 26 (1987)
	ダイヤモンドコーティング超硬合 金工具の開発	池ヶ谷明彦	住友電気工業	粉体および粉末冶金, 34, p. 411 (1987)
1987	直流プラズマ法によるダイヤモン ド合成	鈴木一博	青山学院大学	Appl. Phys. Lett., 50, p. 728 (1987) , NEW DIAMOND 14, 44 (1989)
	ECR マイクロ波プラズマ法によ るダイヤモンド合成	川原田洋	大阪大学	Jpn. J. Appl. Phys., 26, p. L1032 (1987) , NEW DIAMOND 29, 32 (1993)
	cBN のpn 接合作製に成功	三島 修	無機材質研究所	Science, 238, p. 181 (1987), NEW DIAMOND 10, 21 (1988)
	金属添加ダイヤモンド状炭素膜 (Me:DLC)の作製	H. Dimigen	Philips	Appl. Phys. Lett., 50, p. 1056 (1987)
	ダイヤモンドおよびダイヤモンド 状炭素膜コーティング振動板の開 発	藤森直治	住友電気工業	NEW DIAMOND 5, 20 (1987)
	ダイヤモンド状炭素膜のビデオ用 蒸着テープ保護膜への適用	黒川英雄	松下電器産業	IEEE Trans. Magnetics, MAG-23, 5, p. 2410 (1987) , NEW DIAMOND 11, 14 (1988)
	ダイヤモンドポイントコンタクト トランジスタの試作	M. W. Geis	MIT	IEEE Elect. Dev. Lett., EDL 8-341 (1987)
	ダイヤモンド状炭素膜コーティン グ振動板の開発	藤森直治	住友電気工業	NEW DIAMOND 5, 20 (1987)
	ダイヤモンド状炭素膜のビデオ用 蒸着テープ保護膜への適用	黒川英雄	松下電器産業	IEEE Trans. Magnetics, MAG-23, 5, p. 2410 (1987) , NEW DIAMOND 11, 14 (1988)
1988	燃焼炎法によるダイヤモンド合成	広瀬洋一	日本工業大学	Proc. 1st Int.Symp. Diamond and Diamond-like Films, Electrochem. Soc.,p. 80 (1989), NEW DIAMOND 10, 34 (1988)
	CVD ダイヤモンド自立膜ろう付け工具の開発	奥住文徳	旭ダイヤモンド工業	Proc. Superabrasive'91, 15, p. 1-14 (1991) , NEW DIAMOND 9, 34 (1988)
	13C ダイヤモンドの欠陥評価	A. T. Collins	King's College, London	J. Phys. C Solid State Phys., 21, p. 1363 (1988)
	X 線用ダイヤモンド窓の開発	K. V. Ravi	Crystallume	Proc. 1st Conference on Science and Technology of New Diamond, p. 29 (1988)
	ダイヤモンドサーミスタの開発	中幡英章	住友電気工業	1st Int'l Conf.New Diamond and Technol. (1988)
1989	CVD ダイヤモンドで励起子発光 の観察	A. Collins	King's College, London(英)	J. Phys. Condens. Matter, 1, p. 4029 (1989) , NEW DIAMOND 18, 2 (1990)
	超硬質C3N4 の予言	A. Y. Liu	UC Berkeley	Science, 245, p. 84-842 47, 4 (1997)
	H パッシベーションでダイヤモ ンドの電気抵抗変化観測	M. I. Landstrass	Crystallume	Appl. Phys. Lett., 55, p. 1391 (1989)
	ダイヤモンドFET(電界効果トラ ンジスタ)の研究開発	塩見 弘	住友電気工業	Jpn. J. Appl. Phys., 28, p. L2153 (1989)
	ダイヤモンド膜の塑性加工用型へ の応用	村川正夫	日本工業大学	Surf. Coat. Technol., 36, p. 303 (1988), NEW DIAMOND 15, 42 (1989)
	熱化学反応を利用したダイヤモン ド膜の研磨	吉川昌範	東京工業大学	精密工学会誌, 55, p. 77(1989) 11, 18(1988)

1990	マイクロ波熱プラズマ法によるダ イヤモンド合成	光田好孝	東京大学	Proc. 1st Conference on Science and Technology of New Diamond, p. 65 (1988)
	ベルジャー型マイクロ波プラズマ	P. Bachmann	Pennsilvania State	ivew Diamond, p. 03 (1300)
	法によるダイヤモンド合成 cBN 上でのヘテロエピタキシャ ル成長	小泉 聡	Univ.(米) 青山学院大学	Appl. Phys. Lett., 57, p. 563 (1990), NEW DIAMOND 34, 8 (1994)
	同位体高純度ダイヤモンドの高熱 伝導の観測	T, R. Anthony	GE	Phys. Rev. B, 42, p. 1104 (1990)
	ダイヤモンド単体振動板の開発	田辺敬一郎		NEW DIAMOND 19, 26 (1990)
	パルスYAG レーザによるダイヤ モンド薄膜の切断・平坦化	吉川昌範	東京工業大学	精密工学会誌, 56, p. 2017(1990)
	最大サイズダイヤモンド (34 ct) 合成		DeBeers	NEW DIAMOND 52, 2 (1999)
	ダイヤモンド高圧合成用非金属触 媒発見	赤石 實	無機材質研究所	J. Cryst. Growth, 104, p. 578-581 (1990), NEW DIAMOND 19, 24 (1990)
	変成岩からのダイヤモンドの発見	N. Sobolev	Russia	Nauture, 343, p. 742-746 (1990)
	CVD ダイヤモンドヒートシンク の商品化	田辺敬一郎	住友電気工業	Private communication
	ダイヤモンド単体振動板の開発	田辺敬一郎	住友電気工業	NEW DIAMOND 19, 26 (1990)
	ハードディスクへのダイヤモンド 状炭素保護膜の適用	正畑伸明	日本電気	NEW DIAMOND 16, 18 (1990)
1991	バイアス法によるダイヤモンド核 形成	湯郷成美	電気通信大学	Appl. Phys. Lett., 58, p. 1036 (1991) , NEW DIAMOND 36, 9 (1995)
	STM による(1 0 0)表面上の2 ×1 構造の観察	築野 学	住友電気工業	
	気相合成ダイヤモンド粉・砥粒の 試作	吉川昌範	東京工業大学	精密工学会誌, 58, p. 277(1992), NEW DIAMOND 20, 38(1991)
	CVD ダイヤモンドTAB ツールの 開発	奥住文徳	旭ダイヤモンド工業	Proc. Superabrasive'91, 15, p. 1-14 (1991) , NEW DIAMOND 23, 39 (1991)
	ダイヤモンド表面伝導層の発見	中幡英章	住友電気工業	2nd Symp. Diamond Mat., p. 481 (1991)
	眼内レンズへのDLC コーティン グの応用	細谷比左志	大阪大学	NEW DIAMOND 22, 21 (1991)
	キャプスタンへのDLC コーティ ング実用化	中上祐一	松下電器産業	Thin Solid Films, 212, p. 240 (1992) , NEW DIAMOND 23, 34 (1991)
	ダイヤモンドpn ダイオードの順 方向バイアス時電子放出観測	M. W. Geis	MIT	IEEE EDL, 12, p. 456 (1991)
	多結晶ダイヤモンド膜を使った SAW フィルタ開発	鹿田真一	住友電気工業	Diam. Relat. Mater., 2, p. 1197 (1993)
1992	Si 上でのダイヤモンドのヘテロ エピタキシャル成長	B.R.Stoner	North Carolina State Univ.	Appl. Phys. Lett., 60, p. 698 (1992)
	表面弾性波フィルタへの気相合成 ダイヤモンド膜の適用	中幡英章	住友電気工業	IEEE Ultrasonics Conf. Proc., 377 (1992) , NEW DIAMOND 26, 38 (1992)
	多結晶ダイヤモンドを使った MISFET の試作	宮田浩一	神戸製鋼所	Appl. Phys. Lett., 60, p. 480 (1992) , NEW DIAMOND 24, 41 (1992)
	ダイヤモンド被覆切削ドリルの開 発	神田一隆	不二越	NEW DIAMOND 27, 34 (1992)
	1993 電子デバイス用CVD ダイヤ モンドの製品化	G. Lu	Norton	2nd Int. Conf. Appl. Diam. Films and Relat. Mater., p. 269 (1993)
	ダイヤモンド高圧合成用リン触媒 の発見	赤石 實	無機材質研究所	Science, 259, p. 1592 (1993)

	固定砥粒ワイヤソーの試作	諏訪部仁	金沢工業大学	精密工学会誌, 59, p. 939(1993), NEW DIAMOND 54, 34(1999)
1994	SiC 上でのダイヤモンドのヘテロ エピタキシャル成長	川原田洋	早稲田大学	Appl. Phys. Lett., 66, p. 583 (1995)
	気相合成ダイヤモンド自立膜超精 密切削バイトの試作	吉川昌範	東京工業大学	精密工学会誌, 60, p. 1654 (1994)
	ダイヤモンド表面伝導層を使った FET の開発	川原田洋	早稲田大学	Appl. Phys. Lett., 65, p. 1563 (1994), NEW DIAMOND 45, 24 (1997)
	耐熱性ダイヤモンド焼結体の開発	赤石 實	無機材質研究所	第35 回高圧討論会要旨集31,20(1993)
	II 型大型ダイヤモンドの商品化	角谷 均	住友電気工業	Diam. Relat. Mater., 5, p. 1359-1365 (1996) , NEW DIAMOND 58, 16 (2000)
	ダイヤモンド状炭素膜のPET ボ トルへの応用(特許)		キリンビール	
	ダイヤモンド状炭素膜のカメラの O-リングへの応用		オリンパス	
	ダイヤモンド状炭素膜を用いた温 水混合栓の開発	桑山健太	тото	NEW DIAMOND 42, 20 (1996)
	ダイヤモンド状炭素膜を用いたお さ羽の開発		シチズン	NEW DIAMOND 48, 19 (1998)
	ダイヤモンド状炭素膜の時計の保 護膜への応用		シチズン	NEW DIAMOND 8, 19 (1988)
1995	ダイヤモンドのPt 上でのヘテロ エピタキシャル成長	新谷義廣	徳島大学	Diam. Relat. Mater., 6, p. 266 (1997) , NEW DIAMOND 41, 22 (1996)
	CVD ダイヤモンドスクラッチ試 験圧子の試作	竹内貞雄	日本工業大学	精密工学会誌, 61, p. 142(1995), NEW DIAMOND 37, 27(1995)
	ダイヤモンドを用いた圧力センサ の試作	M. Werner	TU Berlin	Diam. Relat. Mater., 4, p. 873 (1995)
	ダイヤモンドを用いたガスセンサ の試作	W. P. Kang	Vanderbilt Univ.	Sensors and Actuators, B24, p. 421 (1995)
	ダイヤモンド内のシリコンの同定	C. D. Clark	Univ. Reading	Phys. Rev. B, 51, p. 1668 (1995)
	VTR シリンダ,有機感光体ドラ ムへのDLC 膜の適用	黒川英雄	松下電器産業	電気学会研資,MC-95-1(1995)
	ダイヤモンドp+ -i-p+構造FET の試作	横田嘉弘	神戸製鋼所	IEEE Trans. Electron Devices, 42, p. 2010 (1995)
1996	ダイヤモンドのIr 基板上でのヘテ ロエピタキシャル成長	大塚一樹	青山学院大学	Jpn. J. Appl. Phys., 35, p. L1072 (1996), NEW DIAMOND 44, 20 (1997)
	クラスタイオンビームによるダイ ヤモンド膜の平坦化	山田 公	京都大学	Nucl. Inst. Meth. Phys. Res., Section B 112, p. 248 (1996), NEW DIAMOND 40, 16 (1996)
	3 インチ多結晶ダイヤモンドウェ ハの開発	藤井 知	住友電気工業	IEEE Ultrasonics Symp. Proc., 183 (1997), NEW DIAMOND 53, 28 (1999)
	窒素添加多結晶ダイヤモンドから の電子放出観測	岡野 健	高知工科大学	Nature, 381, p. 140 (1996) , NEW DIAMOND 43, 22 (1996)
	タングステンカーバイド・アモル ファス炭素膜積層コーティングの 高負荷部品への適用	浜田正樹		機械設計, 40, p. 4(1996), NEW DIAMOND 66, 43 (2002)
	ダイヤモンド紫外線検出器の試作	M. D. Whitfi eld	Univ. College, London	Appl. Phys. Lett., 68, p. 290 (1996)
	ダイヤモンドの深紫外線センサへ の応用	R. D. Mokeag	Univ. College, London	Appl. Phys. Lett., 67, p. 2117 (1995)

	リンをドープしたn 形ダイヤモン ド半導体の合成	小泉 聡	無機材質研究所	Appl. Phys. Lett., 71, p. 1065 (1997), NEW DIAMOND 47, 26 (1997)
1997	アンテナ型マイクロ波プラズマ法 によるダイヤモンド合成	谷山記一	早稲田大学, ミクロ 電子	Jpn. J. Appl. Phys., 40, p. L698 (2001)
	ダイヤモンドの高品質ホモエピタ キシャル成長	竹内大輔	電子技術総合研究所	Diam. Films Technol., 7, p. 277 (1997), NEW DIAMOND 52, 7 (1999)
	ダイヤモンド被覆切削チップの開 発	福井治世	住友電気工業	NEW DIAMOND 65, 30 (2002)
	CVD ダイヤモンド光学部品の発売		GE	Private communication
1998	ダイヤモンド膜のジャイロトロン 用出力窓への応用	今井 剛	日本原子力研究所	Rev. Sci. Instrum., 69, p. 2160 (1998) , NEW DIAMOND 52, 26 (1999)
	カナダダイヤモンド鉱山の発見			ダイヤモンド展図録 (2000)
	ガイドブッシュ, 繊維機械おさ 羽, ゴルフヘッドへのダイヤモン ド状炭素膜の応用	杉山修	シチズン	NEW DIAMOND 48, 19 (1998)
	ホウ素ドープダイヤモンドの電気 分解電極としての実用化	栄長泰明	東京大学	J. Electrochem. Soc., 145,1870 (1998) , NEW DIAMOND 57, 18 (2002)
	光通信用ダイヤモンドSAW フィルタ製品化	中幡英章	住友電気工業	Jpn. J. Appl. Phys., 5B, p. 2918 (1998) , NEW DIAMOND 49, 22 (1998)
	ダイヤモンド深紫外非線形励起子 発光効果の観測	渡邊幸志	電子技術総合研究所	Appl. Phys. Lett., 73, p. 981 (1998) , NEW DIAMOND 62, 22 (2001)
	高圧合成単結晶ダイヤモンドバイ トの試作	小畠一志	大阪ダイヤモンドエ 業	1998 年度精密工学会秋季大会講演論文集, p. 261 (1998), NEW DIAMOND 51, 28(1998)
	ケミカルメカニカルポリシング用 ダイヤモンド工具の開発	原知義	旭ダイヤモンド工業	砥粒加工学会誌, 42, p. 168(1998), NEW DIAMOND 50, 18(1998)
	B ドープダイヤモンドでの高移動 度観測	山中貞則	電子技術総合研究所	Jpn. J. Appl. Phys., 37, p. L109 (1998)
1999	多結晶ダイヤモンド膜を使った DNA チップの作成	高橋浩一郎	広島国際大学	第58 回日本癌学会総会記事 P.314(1999), BIO INDUSTRY, 17, 6, p.44(2000), NEW DIAMOND 71, 7(2003)
	ダイヤモンド大面積ホモエピタキ シャル成長基板の合成		住友電気工業	Proc. ADC/FCT'99 p. 71 (1999) , NEW DIAMOND 56, 16 (2000)
	ダイヤモンド膜のマイクロマシニ ング	柴田隆行	北海道大学	Proc. SPIE, 3680, Symp. Design, Test, and Microfabrication on MEMS and MOEMS, 1125 (1999), NEW DIAMOND 57, 24 (2000)
	茶色天然ダイヤモンドの高品質化 処理の開発		GE	Diam. Relat. Mater., 9, p. 113-122 (2000)
	バインダレスcBN 焼結体の開発	角谷 均	住友電気工業	ASME 1999, Manufacturing Sci. Eng., MED, 10, p. 759 (1999), NEW DIAMOND 66, 24 (2002)
	ガラスモールドへのダイヤモンド 状炭素膜コーティング	宇野 賢	НОҮА	オプティクス52, 14(1999)
2000	ダイヤモンドのエキシトン発光の 非線形効果	渡邊幸志	電子技術総合研究所	Jpn. J. Appl. Phys., 39, p. L835 (2000) , NEW DIAMOND 62, 22 (2001)
	sp3-sp2-H の三元状態図の発表	A.C. Ferrari	Univ. Cambridge (英)	Phys. Rev. B, 61, p. 14095 (2000)
	ペースメーカリード,ステントへ のダイヤモンド状炭素膜コーティ ング	木村加奈子	聖マリアンナ医科大 学	人工臓器,29, p. 127(2000), NEW DIAMOND 63, 30(2001)

	集束イオンビームを用いたアモル ファス炭素立体ナノ構造の形成	松井真二	姫路工業大学	J. Vac. Sci. Tech B, 18, p. 3168 (2000), NEW DIAMOND 65, 24 (2002)
	ダイヤモンドのAFM プローブへ の応用	柴田隆行	北海道大学	Symp. Design, Test Maicrofab. MEMS and MOEMS, SPIE 3680, p. 1125-1999
	ダイヤモンドMEMS マイクログ リッパ試作	柴田隆行	北海道大学	IEEE J. MEMS, 9, 47 (2000), NEW DIAMOND 57, 24 (2000)
	ダイヤモンドと金属の常温接合	須賀唯知	東京大学	NEW DIAMOND 56, 18 (2000)
2001	CVD ダイヤモンドドレッサの開発	相川博勝	旭ダイヤモンド工業	NEW DIAMOND 61, 26 (2001)
	ダイヤモンドを使ったDNA を合 成するマイクロシステムの試作	M. Adamschik	Univ. Ulm	Diam. Relat. Mater., 10, p. 722 (2001)
	ダイヤモンドを使ったDNA を合 成するマイクロシステムの試作	E. Kohn	Univ. Ulm	Diam. Relar. Mater., 10, p. 1684 (2001)
	SAW デバイス新製品展開多数 (無線通信,共振器など)	鹿田真一	住友電気工業	NDFCT, 15, p. 349 (2005)
	電解質溶液ゲートFET の試作	川原田洋	早稲田大学	Phys. Status Solidi A, 185, p. 79 (2001)
	ダイヤモンドマイクロシステムに よるヘモグロビンなどの生体分子 の分離検出	H. Bjoerkman	Uppsala Univ.	Sensors and Actuators, B79, p. 71 (2001)
	ダイヤモンド高周波動作確認	谷内寛直	早稲田大学	IEEE Elec.Dev. Lett., 22, p. 391-393 (2001)
2002	ダイヤモンドpn 接合の作製	小泉 聡	物質・材料研究機構	Diam. Relat. Mater., 11, p. 307 (2002)
	ダイヤモンド状炭素膜コーティン グ切削チップの開発	福井治世	住友電気工業	NEW DIAMOND 65, 30 (2002)
	ダイヤモンドを使って最大発振周 波数 fmax=30 GHz 観測	A. Aleksov	Univ. Ulm	Dev. Lett., 23, 488 (2002)
	ダイヤモンドを使った単電子トラ ンジスタ動作確認	立木 実	早稲田大学	Appl. Phys. Lett., 81, p. 2854-2856 (2002)
2003	バインダレスダイヤモンド多結晶 体の高圧合成	入舩徹男	愛媛大学	Nature, 421, p. 599 (2003) , NEW DIAMOND 69, 28 (2003)
	ダイヤモンド電極を使った電気分 解による汚水処理装置		CONDIAS	The Elctrochem. Soc., Spring 40 (2003)
2004	気相法によるダイヤモンド超伝導 体の合成	高野義彦	早稲田大学,物質・ 材料研究機構	Appl. Phys. Lett., 85, p. 2851 (2004) , NEW DIAMOND 76, 26 (2005)
	ダイヤモンドFET による酵素 (バイオ)センサの試作	K-S. Song	早稲田大学	Jpn. J. Appl. Phys., 43, p. L814-L817 (2004)
	超伝導ダイヤモンドの高圧合成に 成功	E. A. Ekimov	Russia	Nature, 428, p. 542-545 (2004)
	高品質hBN 単結晶の合成に成功	谷口 尚	物質材料研究機構	Nature, Mater., 3, p. 404 (2004) , NEW DIAMOND 75, 34 (2004)
	ダイヤモンド(1 0 0)面でn 形 半導体の合成	加藤宙光	産業技術総合研究所	Appl. Phys. Lett., 86, p. 222111 (2005)
	ダイヤモンドpn 接合で紫外線発 光を確認	堀内賢治	東京ガス	第63 回応用物理学会,p. 501(2002),NEW DIAMOND 72, 6(2004)
	ダイヤモンドFET による酵素 (バイオ)センサの試作	K. S. Song	早稲田大学	Jpn. J. Appl. Phys., 43, p. L814-L817 (2004)
	メタルダイヤコンポジットヒート シンク材料	吉田克也	住友電気工業	Microelectron. Reliab., 44, p. 303 (2004)
2005	ダイヤモンド(100)面でのn 形半導体の合成	加藤宙光	産業技術総合研究所	Appl. Phys. Lett., 86, p. 222111 (2005)

ダイヤモンドの1 インチヘテロエ ピタキシャル成長	前田真太郎	青山学院大学	第19 回ダイヤモンドシンポジウム講演要旨集,p. 50 (2005), NEW DIAMOND 82, 20(2006)
高配向ダイヤモンド膜を使った紫 外線センサの開発	林 和志	神戸製鋼所	Jpn. J. Appl. Phys., 44, p. 7301 (2005), NEW DIAMOND 81, 32 (2006)
ロータリーエンジンコーナシール へのダイヤモンド状炭素膜応用	中谷達行	トーヨーエイテック	NEW DIAMOND 79, 36 (2005)
ダイヤモンド高周波FET の高パワー動作	嘉数 誠	NTT	Elect. Lett., 41, p. 1249-1250 (2005)
パワーデバイス検討	S. J. Rashid	Univ. Cambridge	IEEE Int'1 Symp. Power Semiconductor Devices, Proc., 315 (2005)
高圧合成 II a ダイヤモンド圧子の 開発	角谷均	住友電気工業	Rev. Sci., Instrum., 76 , p. 026112 (2005) , NEW DIAMOND 77, 24 (2005)